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Abstract—A nonlocal constitutive formulation for a porous ductile material is investigated, in
which delocalization relates to the damage mechanism. An elastic—viscoplastic material modeli is
used, with delocalization incorporated in terms of an integral condition on the rate of increase of
the void volume fraction. Two model problems are analysed to study the effect of including this
material length, one relates to localization of plastic flow in shear bands, while the other considers
a metal matrix composite. Both model problems involve final failure in strongly nonhomogeneous
strain fields, and it is shown that the inherent mesh sensitivity of the numerical failure predictions
can be removed by using the nonlocal material model considered here.

1. INTRODUCTION

Practically all continuum studies of failure in ductile metals have been based on local
constitutive relations, which do not represent a material length scale. Unless a length scale
is somehow included in the problem formulation, it is well known that numerical predictions
of final fracture will show an inherent mesh sensitivity, since the softening material behav-
iour typical of situations near final failure will tend to give localized damage in regions as
narrow as possible within the mesh resolution. For example, studies of ductile crack growth
have introduced length scales, by directly specifying the size and spacing of larger voids
(Needleman and Tvergaard, 1987, 1991), or the size of cleavage grains in studies accounting
also for a brittle failure mechanism (Tvergaard and Needleman, 1993). An investigation of
mesh sensitivity in dynamic ductile crack growth showed that the length scale introduced
by the spacing of the larger voids could remove the inherent mesh dependence (Needleman
and Tvergaard, 1994).

The significance of incorporating a material length scale into constitutive relations
has been demonstrated for a number of specific material applications, e.g. for damage
development and crack growth in concrete (Bazant er af. 1984), or for the modelling of
failure by localization in soil or rock (Vardoulakis, 1988). For the case of metals Fleck et
al. (1993, 1994) have presented experiments that indicate a size effect of the order of a
micrometer, and they have argued that this may be explained by geometrically necessary
dislocations in the presence of gradients of plastic shear (Ashby, 1970). A variety of
constitutive relations for metal plasticity have been proposed that incorporate a material
length scale, e.g. Aifantis (1984), Zbib and Aifantis (1989), de Borst (1993), Fleck et al.
(1993, 1994). But in addition to length scales dependent on plastic deformation mechanisms,
there may be other relevant characteristic lengths related to damage development by the
nucleation and growth of voids or by microcrack formation. Pijaudier-Cabot and Bazant
(1987) and Barenblatt (1992) have suggested nonlocal constitutive formulations in which
delocalization relates to the damage mechanism, and the same idea has been used by
Leblond et al. (1994) in proposing a nonlocal version of the porous ductile material model
of Gurson (1977).
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In the present paper we use the ideas of Leblond er al. (1994) in a study based on
an elastic—viscoplastic version of the Gurson model (Pan ez al., 1983). Delocalization is
incorporated into the constitutive relation in terms of an integral condition on the rate of
increase of the void volume fraction, where the characteristic material length may be
considered representative of the average void spacing in the material. Leblond ef a/. (1994)
have used the corresponding time—independent constitutive relation in a numerical study
with very high initial void volume fractions to show that the width of shear bands emanating
from an initial imperfection in a plane strain tensile test specimen are indeed controlled by
the incorporated length scale. Here, for the viscoplastic material we analyse two model
problems, under quasi-static loading conditions, to gain insight into the effect of the
delocalization. One problem relates to localization of plastic flow in shear bands, for which
a parametric study is carried out, comparing different mesh refinements and different values
of the characteristic material length. The other model problem considers metal matrix
composites, for which intensive plastic shearing at sharp edges on the ends of brittle fibres
tend to show a significant mesh sensitivity in numerical studies based on a local constitutive
relation.

2. MATERIAL MODEL

The material model used is based on Gurson’s (1975) flow potential for a progressively
cavitating solid with a nonlocal evolution equation for the porosity as in Leblond et al.
(1994). In the present study, the matrix material is taken to be viscoplastic, strain controlled
void nucleation is accounted for and the accelerated void growth accompanying coalescence
1s modelled.

The rate of deformation (the symmetric part of F-F~!, where F is the deformation
gradient), is written as the sum of an elastic part and a plastic part,

d=d*+dP )]
with
d°=2L""':6. (2)

Here, 6 is the Jaumann rate of Cauchy stress, A:B = 4'B;,
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The parameters ¢, and g, were introduced by Tvergaard (1981, 1982) to bring pre-
dictions of the model into closer agreement with full numerical analyses of periodic arrays
of voids. The function f* (f) accounts for the effects of rapid void coalescence at failure
and is taken to have the form (Tvergaard and Needleman, 1984},
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The onset of rapid void coalescence is assumed to begin at a critical void volume
fraction, f., with /¥ being the value of f* at zero stress, i.e. f¥=1/q,. Asf— f, f* > f¥
and the material loses all stress carrying capacity. Some computations are also carried out
using f*( ) = f, in order to separate effects of porosity induced localization from those of
failure. The parameter values are taken to be ¢, = 1.5 and ¢, = 1, and, when eqn (6) is
used, fr = 0.25 with f either 0.08 or 0.15. Background on this model of a progressively
cavitating solid and on the basis for the choice of parameter values is given in Tvergaard
(1990a).

With attention restricted to strain controlled nucleation, the local growth of existing
voids and the local nucleation of new voids is given by

o = (1=)d° 1+ 28 O

Void nucleation is taken to follow a normal distribution (Chu and Needleman, 1980) so
that

. | /7 e \2
9 = fNﬁexp [—*(6 EN) ] ®)
Sna/ 2T 2\ sn

The rate of increase of the void volume fraction in the material point at location X in
the reference configuration is obtained from the local values in eqn (7) by (Leblond et al.,
1994 ; Pijauder-Cabot and Bazant, 1987)

, 1 , .
Jx) = W J JiocaR)w (x—=%) dV ©)

where V is the volume of the body in the reference configuration and we use

1 q

w(z) = o z\P (10)
I+ (z)

with z = /z -z, a material characteristic length L > 0, p = 8, g = 2 and
W(x) = J w(x—%)dV. (1)
v

The local formulation corresponds to the limit L — 0. With L > 0, / (X) = fioear When fiocy is
spatially uniform. Hence, nonlocality is associated with spatial gradients in f.

SAS 32-8/9-D
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Fig. 1. Delocalization function (10) with p = 8 and ¢ = 2.

As seen in Fig. 1. the function w is such that w > 0 for z < L and w0 for - > L,
with a relatively narrow transition region ; w = 0.25 at z/L = 1.0, w = 0.021 at z/L = 1.25
and w = 0.0014 at z/L = 1.5. In the computations a cutoff length, L. = 1.5L. is specified
such that w in eqn (9) 1s taken to be zero forz > L.

At present, there is no micromechanical basis for the nonlocal description. Therefore,
choices in the nonlocal modelling have been made arbitrarily or for reasons of com-
putational convenience. For example, the nonlocal transformations for the contributions
t0 froca due to void growth and due to void nucleation in eqn (7) have been assumed to be
the same. Also, the integration in eqn (9) is carried out over the reference configuration
which reduces the amount of computation, since the influence matrix arising from the
discretization of eqn (9) is calculated once and stored. Thus, in the formulation here L is
presumably related to the void spacing in the reference configuration.

The matrix material is assumed to be a viscoplastic solid as in Pan e a/. (1983) and d?
is obtained from

(=g 00

dr = — 12
od | o (12)
ey
with the matrix plastic strain rate, &, given by
= Lan
i N a - = N
&= & <Q(~§)> , g&) = ay[l +&/g] (13)

where £ = [£dr.

Combining (1). (2) and (12) and inverting to obtain the stress rate-strain rate relation
gives

a=pof] 4,
6=9%:d- oL (14)
oo o

3. PROBLEM FORMULATION AND NUMERICAL IMPLEMENTATION

The two model problems to be analysed here are illustrated in Fig. 2. Plane strain
conditions are assumed in both cases, and the initial length and width of the unit cells
analysed are denoted A4, and B, respectively. The unit cell in Fig. 2(a) represents a material
with a doubly periodic array of soft spots, containing initial porosity, as has also been
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Fig. 2. Two plane strain model problems analysed. (a) Material with doubly periodic array of soft
spots. (b) Metal reinforced by short brittle fibres.

studied by Tvergaard (1990b). Figure 2(b) represents a plane strain model of a material
with a doubly periodic array of short brittle fibres (as e.g. in Christman er a/., 1989). Due
to the assumption of plane strain conditions the soft spots and the fibres are in fact cylinders
with their axes in the x*-direction. Hence, the circumstances modelled in Fig. 2(b) can also
be regarded as representing the transverse response of a long fibre composite. Symmetry
boundary conditions are assumed in the computations

W =0, T°=0, atx' =0 (15)
w =0, T'=0, atx’=0 (16)
' =U,. T°=0, atx'=4, (17)
it =U,, T'=0, atx*=B, (18)

where u' and 7' are the displacement components and nominal traction components,
respectively, on the reference base vectors. The two constants U, and U, are the dis-
placements of the edges. and the ratio U,/U, is determined in each increment so that the
average overall stress state corresponds to uniaxial plane strain tension.

The initial porosity distribution in the circular soft spot indicated in Fig. 2(a) is
specified by

f=Afexp{—[(x") + (") T/R}} (19)

where Af is the amplitude and R, is the radius. Thus, with the symmetries assumed, the
initial spacings between soft spots are 24, and 2B, in the x'- and x*-directions, respectively.
In the computations to be shown here, the values Af'= 0.02 and Ry/B, = 0.08 are employed.
Otherwise the material is taken to be initially void free, but strain controlled nucleation is
assumed, with £, = 0.04, &, = 0.3 and sy = 0.1 in (8).

In the metal matrix composite, Fig. 2(b), the half fibre length and width are denoted
C, and D,, respectively. Generally, brittle fibres have significantly higher elastic modulus
than the metal matrix, and here the fibres are approximated as rigid. Thus, with perfect
bonding, the additional boundary conditions for the metal region are

w=u'=0, atx'=C,, x> <D, (20)

w =a'=0, atx’ =D, x'<C,. 2n

In the metal strain controlled nucleation with no initial voids is assumed as also specified
for the problem of Fig. 2(a).

A convected coordinate Lagrangian formulation of the field equations is used. For the
numerical solution a linear incremental solution procedure is employed, with the equations
of equilibrium specified in terms of the incremental version of the principle of virtual work
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J oy, dV = j Tiou' ds. (22)
\'% S

Here, V' and S are the volume and surface, respectively, of the region analysed, in the
reference configuration, t9 are the components of the Kirchhoff stress tensor on the current
base vectors, and #; are the Lagrangian strain tensor components. The meshes used for the
analyses consist of quadrilaterals, each built up of four simple constant strain triangular
elements. This element configuration is well suited for representing shear band localization,
as long as the critical orientation of shear bands is along diagonals or sides of the quadri-
laterals (Tvergaard et a/., 1981).

With the periodicities employed here it is clear that the integral eqn (9) involves also
material points outside the region analysed numerically. Due to the periodicities all stress
and strain fields are symmetric about the planes x' =0, x' = 4y, x>’ =0 and x* = B,,
respectively, as implied by eqns (15-18), and thus the needed values of f,., are known
directly from values inside the quadrant analysed. This has been used in the present analyses,
such that the precalculated influence matrix accounts for values of .., outside the region
analysed, determined by symmetries. In all cases studied here the cutoff length L, is smaller
than the smallest dimension, A4, or B,, of the unit cell, which means that only values of /...,
in the eight nearest surrounding quadrants are needed for calculating / using (9).

The stress rate—strain rate relation (14) could be used directly in the rate form of the
principle of virtual work (22) to obtain an incremental solution to the boundary value
problems. Because the matrix material is taken to be viscoplastic such an approach would
not be complicated by the nonlocal nature of the constitutive relation. Updating would
involve calculating f,,.,, from (7) and then obtaining / from (9). However, very small time
steps would be required for numerical stability. In order to increase the stable time step,
the rate tangent formulation of Peirce er al. (1984) is used. Computing a tangent modulus
is complicated by the nonlocal nature of the constitutive relation. The basis for the com-
putation of a tangent modulus (rate dependent or rate independent) is the consistency
relation

— 6+ =G+ —[=0 (23)

where fis given by (9). In the present calculations, fis replaced by Kf;o..., where K = f/fiocar
from the previous time step. Also, to prevent numerical problems when fmal is very small,
K is taken to be unity if fi,., is less than 107'°. With K f,,., replacing f in eqn (23), the
computation of the rate tangent modulus and the constitutive updating proceeds as for the
corresponding local constitutive relation. The time step sizes need to be small enough so
that K at any integration point does not vary substantially from step to step.

4. NUMERICAL RESULTS

Fixed material properties are used in the calculations with &, = g,/E = 0.00333,
N = 0.1 and m = 0.00333 in (13). Also, Poisson’s ratio, v, is taken to be 0.3 and the applied
displacement rate, U, in (17), is specified so that &/é, = 1, where & = U/(4,+ U)).

4.1. Shear band localization

Figure 3 shows overall stress—strain curves for a material with a doubly periodic array
of soft spots. Results are shown for 4,/B, = 0.48 using four uniform meshes consisting of
from 7 x 7 through 42 x 42 quadrilaterals (from 196 triangular elements to 7056 triangular
elements). Here, ¢, = In(1+ U,/A4,) and o, is the corresponding force per unit current area.
In Fig. 3(a), the local form of the porous plastic constitutive relation (L = 0) is used, while
in Fig. 3(b) L = 0.1B,. In these calculations, /* = f'so that there is no loss of stress carrying
capacity. Hence, the stress drops in Fig. 3(a) are a consequence of porosity induced
localization and not of material failure. There is reasonably good agreement in Fig. 3(a)
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Fig. 3. Overall plane strain stress—strain curves for a material having a doubly periodic array of soft
spots, with 4,/B, =048 and f* = /. (a) L =0. (b) L = 0.18,.

between the calculations with 14 x 14, 28 x 28 and 42 x 42 quadrilaterals for the value of
the overall strain, ¢, at which the stress drop due to localization begins. However, the post-
localization response is clearly very sensitive to the mesh resolution with L = 0. In Fig.
3(b), where L = 0.1B,, the overall stress-strain response is essentially identical for all four
mesh resolutions and there is no sharp drop in g,. With 4,/B, = 0.48, the quadrilateral
diagonals are favorably oriented for shear bands for the local constitutive relation (L = 0).
For L = 0.1B, calculations were also carried out using A,/B, = 0.44 and 4,/B, = 0.40 and
the overall stress—strain response was found to be insensitive to mesh orientation. Thus,
the lack of a stress drop in Fig. 3(b) is not a consequence of the mesh orientation.

It is known from several previous investigations (e.g. see Tvergaard, 1981 ; Pan et al.,
1983) that in plane strain conditions porosity leads to the onset of localization at rather
small void volume fractions and that nucleation tends to further enhance the onset of
localization. Furthermore, as the regular mesh with crossed triangles can accurately resolve
flow localization (Tvergaard et al., 1981 ; Tvergaard, 1990b), it is known a priori for L =0
that localization will be predicted in the cases studied here. The fact that no stress drop is
observed in Fig. 3(b) for L = 0.1 B, is related to the large influence of shear band width
compared to shear band spacing.

Figures 4 and 5 show contours of void volume fraction, f, and deformed quadrilateral
meshes for the calculations in Figs 3(a) and 3(b), respectively. What is shown is the
deformed configuration of the computational cell ; because of the doubly periodic symmetry,
the full configuration involves a collection of intersecting shear bands. For each calculation,
the stage of deformation shown corresponds to the termination point of the computed
overall stress—strain curve. In Fig. 4, where L = 0, the shear band width is clearly set by
the mesh. On the other hand in Fig. 5, where L = 0.1B,, the shear band width is rather mesh
insensitive. There is a significant porosity and deformation gradient across the specimen
and the resolution of the gradients increases with increasing mesh refinement. The good
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Fig. 4. Contours of void volume fraction, f. for L = 0. (a) 7x 7 quadrilateral mesh at & = 0.507.
(b) 14 x 14 quadrilateral mesh at ¢, = 0.405. (¢) 28 x 28 quadrilateral mesh at &, = 0.334. (d) 42 x 42
quadrilateral mesh at & = 0.317.

agreement between the calculations using the 28 x 28 and 42 x 42 quadrilateral meshes is
evident in Fig. 5 and shows that for L = 0.1B, the 28 x 28 mesh gives a converged solution.

The variations of void volume fraction across the specimen for the various meshes is
plotted in Fig. 6. These are taken from the contour plots in Figs 4 and 5.1 The strong
sensitivity of the band width to the mesh for the local constitutive relation is seen in Fig.
6(a). The peak values in Fig. 6(a) should not be compared. because the data for different
meshes pertain to different values of the overall strain. On the other hand, in Fig. 6(b),
where the value of ¢, is the same for each case, the peak values as well as the band width
can be compared. Even with L = 0.1B, the 7 x 7 mesh is too coarse to resolve the gradients
in the band. However, because of the broad band, the 14 x 14 mesh gives a reasonable
representation and the results for the 28 x 28 and 42 x 42 quadrilateral meshes nearly
coincide.

The variation in stress—strain response with L is shown in Fig. 7 using a 28 x 28
quadrilateral mesh. The curves for L = 0 and L = 0.1B, are repeated from Fig. 3. Cor-
responding porosity contour plots and deformed meshes are shown in Fig. § for L =0,
L =0.025B,, L = 0.05B, and L = 0.1B,. In Fig. 8(b), where L = 0.0258,, the width of the
large shear region is about three clements wide. With L = 0.058,, the large shear region
involves five or six elements and with L = 0.18, around ten elements are involved. The
increased width of the band, for a fixed mesh, means more elements to resolve the gradients
across the band and increased accuracy. Figure 9 shows the porosity variation across the
band taken from the contour plots in Fig. 8, where the peak porosity levels should not be
compared, as the corresponding overall strain values differ. With L = 0.1B,and L = 0.058,,

T Using the commercial plotting program Tecplot from Amtec Engineering Inc.. Bellevue, WA.
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Fig. 5. Contours of void volume fraction. /. for L = 0.1 B,. (a) 7 x 7 quadrilateral mesh at & = 0.520.
(b) 14 x 14 quadrilateral mesh at ¢; = 0.520. (c¢) 28 x 28 quadrilateral mesh at ¢; = 0.520. (d) 42 x 42
(uadrilateral mesh at ¢ = 0.520.

the porosity variation is quite smooth, while with L = 0.025B, the effect of the mesh is
evident. For the local constitutive relation, L = 0, the band width is set by the mesh.

In the calculations so far. f/* = [, so that localization occurs but not material failure,
i.e. there is no complete loss of stress carrying capacity. Figure 10 shows results where
/. =0.08 for both L = 0 and L = 0.1B, using 14 x 14 and 28 x 28 quadrilateral meshes. The
overall stress—strain curves are terminated when a complete loss of stress carrying capacity
(f = /) has taken place in a triangular element. With L = 0.18B,, the overall stress—strain
curves are slightly further apart than in Fig. 3(b), where maternial failure was precluded.
This is because of the effect of mesh refinement on resolving the local field concentrations
in the inhomogeneity, where failure occurs first. On the other hand, with £ = 0, the curves
for the two mesh resolutions are closer together than in Fig. 3(a). This 1s because with
f. = 0.08 material failure begins before there is much localization. The results in Fig. 10 do
show a significant effect of nonlocality on the strain at which failure begins.

4.2. Failure in metal matrix composites

The metal-matrix composite calculations are carried out for a 30% reinforcement area
fraction, and for a fibre and cell aspect ratio of four. so that 4,/B, =4 and Cy/D, = 4.
Figure 11 shows curves of overall stress, o,, versus overall strain, g, for four values of L;
L =1.095D,, . =0.548D,, L = 0.274D, and L = 0. In each case. a mesh consisting of 304
quadrilateral elements (1216 triangular finite elements) was used. Also, in these calculations
f.ineqn (6) is taken to be 0.15. For L = 0 and L = 0.274D,, the overall stress—strain curves
in Fig. 11 are terminated when material failure has occurred in an element ( f = f;). For the
calculations with L = 0.548D, and L = 1.095D,, f exceeds f. where the porosity is a
maximum, but a complete loss of stress carrying capacity has not yet occurred over the
strain range shown. Both the maximum stress and the strain at which the maximum stress
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Fig. 6. Curves of void volume fraction, £, versus x' at x* = 0.35 B,. (a) For L = 0 from Fig. 4. (b)
For L = 0.1B, from Fig. 5.
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Fig. 7. Variation in overall stress strain response with L using a 28 x 28 quadrilateral mesh.

occurs increase with increasing L. In addition, the drop in stress carrying capacity is much
more gradual for the larger values of L.

Contours of constant void volume fraction, f, and matrix plastic strain, & are shown in
Figs 12 and 13, respectively. In all cases in Fig. 12, the void volume fraction is a maximum
along the fibre-matrix interface x' = C,. With L = 0, this maximum is at the fibre corner
(x* = Dy). With increasing L, the location of the maximum porosity shifts toward the x'-
axis. Additionally, the region of high porosity becomes more spread out with increasing L.
The matrix plastic strain contours in Fig. 13 show that the location of the maximum strain
remains at the fibre corner for the nonlocal constitutive relation, but the strain concentration
there is reduced. The maximum hydrostatic tension, which strongly promotes void growth,
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Fig. 8. Contours of void volume fraction, £, for a 28 x 28 quadrilateral mesh. (a) L = 0 ate, = 0.334.
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Fig. 9. Curves of void volume fraction, f, versus x' at x> ~ 0.35 from Fig. 8.

0.0

occurs near the x'-axis, while the maximum straining occurs at the fibre corner. For the
nonlocal damage relation used here, this shifts the porosity peak from the fibre corner to
the fibre center. Additionally, the gradients in both strain and porosity become much less
sharp with increasing L. Thus, in this case, nonlocality not only affects when failure occurs
but also where failure initiates.

Calculations with L = 0 and L = 1.095D, were also carried out using a mesh with half
the number of elements in each direction. In Fig. 14, the coarser mesh consists of 76
quadrilateral elements, while the finer mesh (304 quadrilateral elements) results are taken
from Fig. 11. With L = 0, the coarse mesh gives rise to a higher load maximum ; 3.03 g, as
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Fig. 10. Overall plane strain stress—strain curves for a material having a doubly periodic array of
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Fig. 11. Overall plane strain stress—strain curves for a material having a doubly periodic array of
fibres. The area fraction of fibres is 30%, A,/B, = 4 and C,/D, = 4.

compared with 2.874, for the finer mesh and takes place at a slightly larger strain, ¢, = 0.0111
as compared with & = 0.0104 for the finer mesh. There is a larger difference between the
two meshes for the strain at which a loss of stress carrying capacity first occurs; ¢ = 0.0138
for the coarse mesh and g = 0.0108 for the finer mesh used. Thus, for L = 0 there is a
significant difference in the predictions obtained using these two meshes. On the other hand,
with L = 1.095D,, the mesh dependence of the results is much smaller. With the coarse
mesh the stress maximum is 3.36 o, and occurs at ¢, = 0.0157 whereas with the fine mesh
the stress maximum of 3.25q, is at g, = 0.0159. The largest difference between the predictions
of the two mesh resolutions occurs before and up to the stress maximum, as is seen in Fig.
14. After the stress maximum, the overall stress-strain curves for the two meshes become
closer together and nearly coincide in the range 0.02 < ¢, < 0.045. Because the gradients
are less severe for larger values of L, once porosity and hence nonlocal effects dominate the
stress and deformation distributions, these fields can be resolved with a coarser mesh than
needed for the local theory.

5. CONCLUDING REMARKS

A nonlocal clastic-viscoplastic version of the Gurson model, using damage delo-
calization as proposed by Leblond ez al. (1994), has been incorporated in a plane strain
programme for quasi-static loading conditions. Two model problems are investigated, one
involving the onset of localization in shear bands developing towards final void sheet
failure, and the other involving metal matrix failure in strongly nonuniform strain fields
around brittle fibres.
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Fig. 12. Contours of void volume fraction, f, for a material having a doubly periodic array of
fibres. The area fraction of fibres is 30%, A4,/B, = 4 and C,/D, = 4. (a) L = 0 at ¢ = 0.00986. (b)
L =0.274D,at & = 0.0163. (¢) L = 1.095D, at ¢, = 0.0471.

The main results obtained are the following:

e For shear bands in a local continuum the post-localization behaviour and the subsequent
value of the overall strain at final failure are strongly mesh dependent. In the nonlocal
continuum, with the characteristic material length specified in terms of an integral
condition on the void volume fraction rate, this mesh sensitivity can be completely
removed. Thus, for a sufficiently fine mesh relative to the material length, both the shear
band width and the peak value of the void volume fraction inside the band are insensitive
to the mesh.

e In metal matrix composites, the basic stress and strain fields are very nonuniform, with
high peaks at sharp fibre edges. Therefore, in a local continuum early failure will tend to
occur at this point. The present results show that both the location where failure initiates
and the value of the overall strain at which failure occurs are sensitive to the value of the
characteristic material length. This material length, which may be considered rep-
resentative of the average void spacing in the matrix material, could typically be of the
order of magnitude of the fibre diameter. Once failure initiates, results using the noniocal
continuum theory also exhibit much less mesh sensitivity than those for a corresponding
local continuum formulation.
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Fig. 13. Contours of matrix plastic strain, g, for a material having a doubly periodic array of fibres.
The area fraction of fibres is 30%, 4,/ B, = 4 and Cy/D, = 4. (a) L = 0 atg = 0.00986. (b) L = 0.274
Doat g = 0.0163. (c) L = 1.095 Dy at ¢, = 0.0471.
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Fig. 14. Mesh sensitivity of overall plane strain stress-strain curves for a material reinforced by a
doubly periodic array of fibres, with area fraction 30%, 4,/B, = 4 and C,/D, = 4.
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